24周年

財(cái)稅實(shí)務(wù) 高薪就業(yè) 學(xué)歷教育
APP下載
APP下載新用戶(hù)掃碼下載
立享專(zhuān)屬優(yōu)惠

安卓版本:8.7.50 蘋(píng)果版本:8.7.50

開(kāi)發(fā)者:北京正保會(huì)計(jì)科技有限公司

應(yīng)用涉及權(quán)限:查看權(quán)限>

APP隱私政策:查看政策>

HD版本上線(xiàn):點(diǎn)擊下載>

2016年ACCA知識(shí)點(diǎn):Linear regression

來(lái)源: 正保會(huì)計(jì)網(wǎng)校 編輯: 2016/04/28 16:25:58 字體:

ACCA P3考試:Linear regression

Least squares linear regression is a method of fitting a straight line to a set of points on a graph. Typical pairs of graph axes could include:

• total cost v volume produced

• quantity sold v selling price

• quantity sold v advertising spend.

The general formula for a straight line is y = ax +b. So, ‘y’ could be total cost and ‘x’ could be volume. ‘a’ gives the slope or gradient of the line (eg how much the cost increases for each additional unit), and ‘b’ is the intersection of the line on the y axis (the cost that would be incurred even if production were zero).

You must be aware of the following when using linear regression:

• The technique guarantees to give the best straight line possible for any set of points. You could supply a set of people’s ages and their telephone numbers and it would purport to a straight-line relationship between these. It is, therefore, essential to investigate how good the relationship is before relying on it. See later when the coefficients of correlation and determination are discussed.

• The more points used, the more reliable the results. It is easy to draw a straight line through two points, but if you can draw a straight line through 10 points you might be on to something.

• A good association between two variables does not prove cause and effect. The association could be accidental or could depend on a third variable. For example, if we saw a share price rise as a company’s profits increase we cannot, on that evidence alone, conclude that an increase in profits causes an increase in share price. For example, both might increase together in periods of economic optimism.

• Extrapolation is much less reliable than interpolation. Interpolation is filling the gaps within the area we have investigated. So, if we know the cost when we make 10,000 units and the cost when we make 12,000 units, we can probably make a reasonable estimate of the costs when we make 11,000 units. Extrapolation, on the other hand, is where you use data to predict what will occur in areas outside the region you have investigated.

We have no experimental data for those areas and therefore run the risk that things might change there. For example, if we have never had production of more than 12,000 units, how reliable will estimates of costs be when output is 15,000 units? Overtime might have to be paid, machines might break down, more production errors might be made.

• Remove other known effects, such as inflation, before performing the analysis, or the results are likely to be distorted. Total cost Volume b, fixed costs A, slope is the variable cost per unit per unit

我要糾錯(cuò)】 責(zé)任編輯:小瑩子

免費(fèi)試聽(tīng)

限時(shí)免費(fèi)資料

  • 近10年A考匯總

    歷年樣卷

  • 最新官方考試大綱

    考試大綱

  • 各科目專(zhuān)業(yè)詞匯表

    詞匯表

  • ACCA考試報(bào)考指南

    報(bào)考指南

  • ACCA考官文章分享

    考官文章

  • 往年考前串講直播

    思維導(dǎo)圖

回到頂部
折疊
網(wǎng)站地圖

Copyright © 2000 - galtzs.cn All Rights Reserved. 北京正保會(huì)計(jì)科技有限公司 版權(quán)所有

京B2-20200959 京ICP備20012371號(hào)-7 出版物經(jīng)營(yíng)許可證 京公網(wǎng)安備 11010802044457號(hào)